PD-95252

 I_D

-0.7A

IRF6217PbF

R_{DS(on)} max

2.4Ω@V_{GS} =-10V

SMPS MOSFET

 V_{DSS}

-150V

HEXFET[®] Power MOSFET

Applications

• Reset Switch for Active Clamp Reset DC to DC converters

 Lead-F 	ree
----------------------------	-----

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

	SUSSE
Top View	SO-8

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	-0.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	-0.5	A
I _{DM}	Pulsed Drain Current ①	-5.0	
P _D @T _A = 25°C	Power Dissipation⊛	2.5	W
	Linear Derating Factor	0.02	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
dv/dt	Peak Diode Recovery dv/dt	4.5	V/ns
TJ	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{0JL}	Junction-to-Drain Lead		20	
R _{0JA}	Junction-to-Ambient ④		50	°C/W

Notes ① through ④ are on page 8

IRF6217PbF

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-150	—	—	V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.17		V/°C	Reference to 25°C, I _D = -1mA ③
R _{DS(on)}	Static Drain-to-Source On-Resistance		—	2.4	Ω	V _{GS} = -10V, I _D = -0.42A ③
V _{GS(th)}	Gate Threshold Voltage	-3.0	—	-5.0	V	$V_{DS} = V_{GS}$, $I_D = -250 \mu A$
IDSS	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -150V, V_{GS} = 0V, T_{J} = 25^{\circ}C$
USS	Brain to obtailed Leakage Burrent		—	-250	μΛ	V_{DS} = -120V, V_{GS} = 0V, T_{J} = 125°C
1	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -20V
I _{GSS}	Gate-to-Source Reverse Leakage	—	—	100		V _{GS} = 20V

Static @ T_J = 25°C (unless otherwise specified)

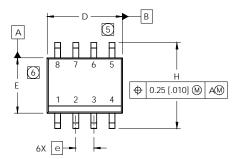
Dynamic @ T_J = 25°C (unless otherwise specified)

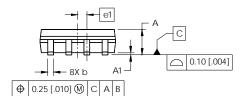
	Parameter	Min.	Тур.	Max.	Units	Conditions
g _{fs}	Forward Transconductance	0.55			S	$V_{DS} = -50V, I_{D} = -0.42A$
Qg	Total Gate Charge		6.0	9.0		I _D = -0.42A
Q _{gs}	Gate-to-Source Charge		1.6	2.4	nC	V _{DS} = -120V
Q _{gd}	Gate-to-Drain ("Miller") Charge		2.8	4.2		V _{GS} = -10V,
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = -75V
tr	Rise Time		7.2		ns	I _D = -0.42A
t _{d(off)}	Turn-Off Delay Time		14		110	$R_G = 6.2\Omega$
t _f	Fall Time		16	—		V _{GS} = -10V ③
Ciss	Input Capacitance		150			$V_{GS} = 0V$
Coss	Output Capacitance		30	—		V _{DS} = -25V
Crss	Reverse Transfer Capacitance		10	—	рF	f = 1.0KHz
Coss	Output Capacitance		150	—		$V_{GS} = 0V, V_{DS} = -1.0V, f = 1.0KHz$
Coss	Output Capacitance		15			$V_{GS} = 0V, V_{DS} = -120V, f = 1.0KHz$
Coss eff.	Effective Output Capacitance		45			$V_{GS} = 0V, V_{DS} = 0V \text{ to } -120V$

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy@		15	mJ
I _{AR}	Avalanche Current①		-1.4	А

Diode Characteristics

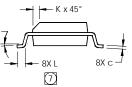

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			-1.8		MOSFET symbol
	(Body Diode)			-1.0	A	showing the
I _{SM}	Pulsed Source Current			-5.0		integral reverse
	(Body Diode) ①			-5.0		p-n junction diode.
V_{SD}	Diode Forward Voltage		—	-1.6	V	$T_J = 25^{\circ}C, I_S = -0.42A, V_{GS} = 0V$ (3)
t _{rr}	Reverse Recovery Time		51	77	ns	$T_J = 25^{\circ}C, I_F = -0.42A$
Q _{rr}	Reverse RecoveryCharge		86	130	nC	di/dt = -100A/µs ③
2	·	•				

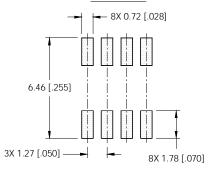

IRF6217PbF

International **IOR** Rectifier

SO-8 Package Outline

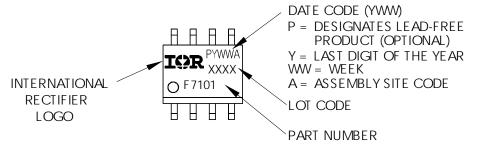
Dimensions are shown in millimeters (inches)



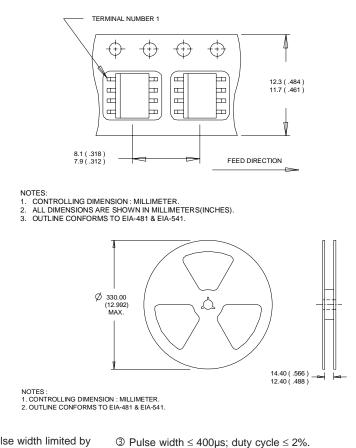

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
- 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].
- (6) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO ASUBSTRATE.

DIM	INC	HES	MILLIM	ETERS
DIIVI	MIN	MAX	MIN	MAX
А	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
b	.013	.020	0.33	0.51
С	.0075	.0098	0.19	0.25
D	.189	.1968	4.80	5.00
Е	.1497	.1574	3.80	4.00
е	.050 B	ASIC	1.27 BASIC	
е1	.025 B	ASIC	0.635 BASIC	
Н	.2284	.2440	5.80	6.20
К	.0099	.0196	0.25	0.50
L	.016	.050	0.40	1.27
у	0°	8°	0°	8°



SO-8 Part Marking


EXAMPLE: THIS IS AN IRF7101 (MOSFET)

IRF6217PbF

SO-8 Tape and Reel

Dimensions are shown in millimeters (inches)

Notes:

 Repetitive rating; pulse width limited by max. junction temperature.

④ When mounted on 1 inch square copper board.

Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market.

